Efficient Transfer Learning using Pretrained Models

Hassan Sajjad

Transfer Learning

• Learn knowledge from one setting and apply it to another setting

2

Why Transfer Learning?

- Several tasks share similar properties
 - Humans learn a language
 - Morphology, syntax, etc.

Why Transfer Learning?

- Several tasks share similar properties
 - Humans learn a language
 - Morphology, syntax, etc.
 - Machines can also benefit from the related tasks
 - POS tagging and named entity tagging
 - A general task helps to learn a specific task

Why Transfer Learning?

- Several tasks share similar properties
 - Humans learn a language
 - Morphology, syntax, etc.
 - Machines can also benefit from the related tasks
 - POS tagging and named entity tagging
 - A general task helps to learn a specific task

Practically,

- Labeled resources are not enough
- Generalization
 - Optimizing more than one tasks

Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a

Traditional ML vs Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a

https://ruder.io/thesis/neural transfer learning for nlp.pdf#page=64

Sentiment classification using News data while target domain is tweet

https://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf#page=64

Sentiment classification using News data while target domain is tweet

Sentiment classification using English News data while target language is Spanish

https://ruder.io/thesis/neural transfer learning for nlp.pdf#page=64

Sentiment classification using News data while target domain is tweet

Sentiment classification using English News data while target language is Spanish

POS and named-entity are related tasks that can help each other

https://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf#page=64

Sentiment classification using News data while target domain is tweet

Sentiment classification using English News data while target language is Spanish

POS and named-entity are related tasks that can help each other

Learn task 1 first and then use the information in task 2

https://ruder.io/thesis/neural transfer learning for nlp.pdf#page=64

https://ruder.io/thesis/neural transfer learning for nlp.pdf#page=64

Pretraining Tasks vs. Target Tasks

Pretraining tasks

- General tasks or related to target tasks
- Unsupervised learning
- Large amount of available data
- Example: language modeling

Target Tasks

- Classification (sentiment classification)
- Word-level prediction (POS tagging)
- Generation (machine translation)

Transfer Learning Using Pretrained Model

Pretrained language models

- BERT, GPT, Elmo, XLNet
- Contextualized embeddings

Achieved state-of-the-art performance

- Sentiment analysis tasks
- Natural language inference tasks
- Text entailment tasks

Contextualized Embeddings

Word vectors

 $Cat = [0.8, -0.3, ...] \qquad We have two cats$

Dog = [0.1, 0.6, ...] It's raining **cats** and **dogs**

Embedding is independent of the context a word appears

Contextualized Embeddings

Word vectors

Cat = [0.8,-0.3,...]

We have two **cats**

Dog = [0.1, 0.6, ...] It's raining **cats** and **dogs**

Embedding is independent of the context a word appears

Contextualized Word vectors

Cat = [0.8,-0.3,...]

Dog = [0.1,0.6,...]

We have two cats

It's raining cats and dogs

Cat = [0.5,0.1,...]

Dog = [-0.9,0.2,...]

Contextualized Embeddings

Word vectors

Cat = [0.8,-0.3,...]

We have two **cats**

Dog = [0.1, 0.6, ...] It's raining **cats** and **dogs**

Embedding is independent of the context a word appears

Contextualized Word vectors

Cat = [0.8,-0.3,...]

Dog = [0.1,0.6,...]

We have two cats

Different vectors of "Cat" based on the context

It's raining cats and dogs

Cat = [0.5,0.1,...]

Dog = [-0.9,0.2,...]

Given a pretrained model, there are two common ways to apply transfer learning

- Feature-based transfer learning
- Fine-tuning based transfer learning

Feature-based Transfer Learning

Feature-based Transfer Learning

Fine-tuning based Transfer Learning

Feature based

- Choice of the classification model
- More control
 - Speed up
 - Memory requirement

Fine-tuning based

- End-to-end learning
- Better in performance on some tasks

- Take a pretrained model
- Choose a target task
- For every input in the target task, extract contextualized embeddings
- Use them as feature in the task-specific classifier

Pretrained models

- BERT-base
 - 13 layers including embedding layers
 - Layer size: 768
 - \circ Features for transfer learning: 13 x 768 = 9984
- BERT-large
 - 25 layers including embedding layers
 - Layer size: 1024
 - \circ Features for transfer learning: 25 * 1024 = 25600

• BERT-base

- 13 layers including embedding layers
- 768 each layer size
- Features for transfer learning: 13 x 768 = 9984

• BERT-large

- 25 layers including embedding layers
- 1024 layer size
- Features for transfer learning: 25 * 1024 = **25600**

Problem

- A large number of feature (compared to 300 embedding size of word2vec)
- Slow training and inference time
- Model overfits

Efficiency Bottlenecks

- Contextualized embedding extraction
 - Requires a full forward pass of the pretrained model
- Large number of features
 - Slower training
 - Slower inference time
 - Sub-optimum performance

Hypothesis

- The distributive nature of the pretrained models causes information redundancy at both layer level and feature level
- Since pretrained models can be used as universal feature extractors, not all features are equally relevant for a downstream task

Hypothesis 1

Questions

- Is it necessary to extract contextualized embeddings from all layers of the network?
 - If knowledge about a task is mostly learned up to certain layers, we can limit the forward pass up to those layers

Hypothesis 1

Questions

- Is it necessary to extract contextualized embeddings from all layers of the network?
 - If knowledge about a task is mostly learned up to certain layers, we can limit the forward pass up to those layers

LayerSelector Module

 It identifies the optimal number of layers required for a downstream task, i.e., reducing the size of contextualized embeddings

Hypothesis 1 & 2

Questions

- Do we need all the features for a downstream NLP task?
 - Due to distributive nature, the information among features may be redundant
 - Not all the features might be relevant equally important for a particular task

Hypothesis 1 & 2

Questions

- Do we need all the features for a downstream NLP task?
 - Due to distributive nature, the information among features may be redundant
 - Not all the features might be relevant equally important for a particular task

CCFS -- Multivariate feature ranking

- Correlation clustering
 - Identify redundant features (neurons)
 - Task independent

Hypothesis 1 & 2

Questions

Ο

- Do we need all the features for a downstream NLP task?
 - Due to distributive nature, the information among features may be redundant
 - Not all the features might be relevant equally important for a particular task

CCFS -- Multivariate feature ranking

- Correlation clustering
 - Identify redundant features (neurons)
 - Task independent
- Multivariate feature ranking
 - Elastic-net based feature ranking $\mathcal{L}(\theta) = -\sum \log P_{\theta}(\mathbf{l}_i | x_i) + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2^2$
 - Identify relevant features with respect to a task

Overall Procedure

- 1. Use LayerSelector to select optimal number of layers L
- 2. Extract contextualized embedding up to the layer L
- 3. Run correlation clustering to identify and filter out redundant features
- 4. Run task-specific feature selector on the reduced feature set
- 5. Select the top features with respect to the task

Goal - reduce the feature set while maintaining performance within a threshold

Evaluation

- BERT and XLNet pretrained models
- Sequence labeling tasks
 - POS tagging, Semantic tagging, CCG tagging, Chunking, Named-entity tagging
- Sequence classification tasks (GLUE benchmarks)
 - Sentiment analysis
 - Semantic equivalence classification
 - Semantic textual similarity
 - Natural language inference (MNLI, QNLI)
 - Question pairs similarity
 - Textual entailment

Results - Sequence labeling

	POS	SEM	CCG	Chunking	NER
Oracle Features	95.2%	92.0%	90.0% 9984	94.6%	97.3%

Results - Sequence labeling

		POS	SEM	CCG	Chunking	NER
	Oracle Features	95.2%	92.0%	90.0% 9984	94.6%	97.3%
3ERT	LS Layer#	94.8%	91.2% 2	88.7% 6	93.5% 4	95.4% 2

Results - Sequence labeling

		POS	SEM	CCG	Chunking	NER
	Oracle Features	95.2%	92.0%	90.0% 9984	94.6%	97.3%
BERT	LS Layer#	94.8%	91.2% 2	88.7% 6	93.5% 4	95.4% 2
	CCFS Features % Reduct.	94.0% 300 97%↓	90.1% 400 96%↓	89.8% 400 96%↓	92.3% 600 94%↓	95.5% 300 97%↓

Results - Sequence Classification

• Using all features

	SST-2	MRPC	MNLI	QNLI	QQP	RTE	STS-B
Oracle Features	90.6%	86.0%	81.7%	90.2% 9984	91.2%	69.3%	89.7%

Results - Sequence Classification

• Using LayerSelector

		SST-2	MRPC	MNLI	QNLI	QQP	RTE	STS-B
	Oracle Features	90.6%	86.0%	81.7%	90.2% 9984	91.2%	69.3%	89.7%
BERT	LS Layer#	85.6% 6	86.0% 11	81.6% 11	89.9% 11	90.9% 11	69.3% 12	89.1% 11

Results - Sequence Classification

• As few as 10 features vs. 9984 features

		SST-2	MRPC	MNLI	QNLI	QQP	RTE	STS-B
	Oracle Features	90.6%	86.0%	81.7%	90.2% 9984	91.2%	69.3%	89.7%
BERT	LS	85.6%	86.0%	81.6%	89.9%	90.9%	69.3%	89.1%
	Layer#	6	11	11	11	11	12	11
	CCFS	86.1%	85.5%	81.0%	89.2%	90.2%	69.0%	88.5%
	Features	100	100	20	10	30	30	400
	% Reduction	(99%↓)	(99%↓)	(99.8%↓)	(99.9%↓)	(99.7%↓)	(99.7%↓)	(96%↓)

Summary

- Transfer learning enables use of various tasks for the benefit of a target task
 - Labeled data is always limited
 - Models trained for a particular tasks do not generalize well
- Sequential transfer learning consists of a pretrained model and a task-specific model
 - Pretrained models are mainly self-learning modules
- The state-of-the-art models come with the issue of requiring large memory and high inference time
- Our proposed method reduces the feature set size to as low as 1% while maintaining 97% of the original performance

Thank you